采油工程

李海涛

目录

  • 1 课程建设任务表
    • 1.1 课程建设任务表
  • 2 教学大纲及教学日历
    • 2.1 课程教学大纲
    • 2.2 教学日历
  • 3 课程教材
    • 3.1 第一章 油井基本流动规律
    • 3.2 第二章 自喷及气举采油
    • 3.3 第三章 有杆泵采油
    • 3.4 第四章 无杆泵采油
    • 3.5 第五章 注水
    • 3.6 第六章 水力压裂
    • 3.7 第七章 酸化
    • 3.8 第八章 油井防砂、防蜡与堵水工艺技术
    • 3.9 第九章 稠油和高凝油的开采技术
    • 3.10 第十章 完井与试油投产
  • 4 视频教学
    • 4.1 第一章 油井基本流动规律
    • 4.2 第二章 自喷及气举采油
    • 4.3 第三章 有杆泵采油
    • 4.4 第五章 注水
    • 4.5 第六章 水力压裂
    • 4.6 第七章 酸化
  • 5 中文电子课件
    • 5.1 第一章 油井基本流动规律
    • 5.2 第二章 自喷及气举采油
    • 5.3 第三章 有杆泵采油
    • 5.4 第四章 无杆泵采油
    • 5.5 第五章 注水
    • 5.6 第六章 水力压裂
    • 5.7 第七章 酸化
  • 6 双语电子课件
    • 6.1 第一章 油井基本流动规律
    • 6.2 第二章 自喷与气举采油
    • 6.3 第三章 有杆泵采油
    • 6.4 第四章 无杆泵采油
    • 6.5 第五章 注水
    • 6.6 第六章 水力压裂
    • 6.7 第七章 酸化
  • 7 作业习题
    • 7.1 第一章 油气基本流动规律
    • 7.2 第二章 自喷及气举采油
    • 7.3 第三章 有杆泵采油
    • 7.4 第四章 无杆泵采油
    • 7.5 第五章 注水
    • 7.6 第六章 水力压裂
    • 7.7 第七章 酸化
    • 7.8 第八章 油井防砂、防蜡和堵水工艺技术
    • 7.9 第九章 稠油和高凝油的开采技术
    • 7.10 第十章 完井与试井投产
  • 8 动画课件
    • 8.1 常规气举
    • 8.2 抽挤循环
    • 8.3 后置抽油机
    • 8.4 杆柱静载变形
    • 8.5 前置抽油机
    • 8.6 悬点静载荷
    • 8.7 油杆抽油
  • 9 课程试卷及参考答案
    • 9.1 真题试卷
    • 9.2 参考答案
  • 10 实验教学
    • 10.1 实验教学大纲
    • 10.2 实验教材
    • 10.3 多媒体课件
      • 10.3.1 两相垂直管流实验
      • 10.3.2 抽油泵泵效实验
    • 10.4 两相垂直管流实验
      • 10.4.1 实验介绍
      • 10.4.2 实验装置
      • 10.4.3 实验操作
      • 10.4.4 数据处理
      • 10.4.5 实验习题
    • 10.5 抽油泵泵效实验
      • 10.5.1 实验介绍
      • 10.5.2 实验装置
      • 10.5.3 实验操作
      • 10.5.4 数据处理
      • 10.5.5 实验习题
  • 11 参考文献
    • 11.1 参考文献
参考文献

[1]      李颖川. 定向井气液两相压力计算数值方法.天然气工业,19902

[2]      Economides M.J. and Hill A. D.Petroleum Production System1994

[3]      Vogel J.V. Inflow PerformanceRelationship for Solution Gas Drive WellsJPT.Jan.1986

[4]      Joshi S.D. Augmentation of WellProductivity with Slant and Horizontal WellsJPT.June 1988

[5]      Standing M.B. Inflow PerformanceRelationship for Damaged Wells Producing by Solution Gas DriveJPT. Nove.1970

[6]      Fetkovich M.J. The IsochrronalTesting of Oil WellsSPE 4529

[7]      Orkiszewski J. PredictingTwo-Phase Pressure Drop in Vertical PipeJPT.June 1967

[8]      Duns H.Jr. and Ros N.C.J.  Vertical Flow of Gas and Liquid Mixtures inWellProc6thWorld PetCong1963

[9]      Mukherjee H. and Brill J.P.Pressure Drop Correlations for Inclined Two-Phase FlowJ.Energy Res.Tech. Dec.1985

[10]  Beggs H.D. and Brill J.P. Study ofTwo-Phase Flow in Inclined PipesJPT.May 1973

[11]  Gilbert W.E. Flowing and Gas-LiftWell Performance, API Drilling and Production Practice1954

[12]  Ros N.C.J. An Analysis of CriticalSimultaneous Gas/Liquid Flow Through a Restriction and Its Application toFlowmeteringAppl. Sci. Res. Sec. 1960  

[13]  Ramey H.J.Jr. Wellbore HeatTransmissionJPT. April 1962

[14]  Satter A.Heat Losses During Flowof Steam Down a WellboreJPT.July 1965

[15]  Shiu K.C. and Beggs H.D.Predicting Temperatures in Flowing Oil WellsJ.EnergyResource Tech. March 1980

[16]  Hasan A.R.and Kabir C.S. HeatTransfer during Two-Phase Flow in Wellbores. PartWellbore Fluid TemperatureSPE22948

[17]  李颖川.计算游梁式抽油机扭矩因数和光杆加速度的另一解析式.石油矿场机械,1991.201

[18]  李颖川.抽油杆柱设计数值方法.西南石油学院学报,1993.152

[19]  API RP11LThirdEdition. API Recommended Practice for Calculation Sucker Rod Pumping Systems(Convention Units). Feb. 1997

[20]  Gibbs S.G.Predicting the Behaviorof Sucker-Rod Pumping Systems. JPT. July 1963

[21]  Gibbs S.G.and Neelg A.B.ComputerDiagnosis of Down-hole Conditions in Sucker Rod Pumping Wells.JPT. Jan.1966

[22]  张琪,吴晓东.抽油井计算机诊断技术及其应用.华东石油学院学报,19842

[23]  Gibbs S.G. A Method of DeterminingSucker Rod Pump Performance. U.S. Patent 3343409Sept.261967

[24]  Doty D.R. and Schmidt Z. AnImproved Model for Sucker Rod Pumping. SPE 10249

[25]  李晶,陈辉等. 螺杆泵优选软件的开发与应用. 石油钻采工艺,1999(6)

[26]  LeaJ.F.and WinklerH.W.What'snew in artificial lift, WORLD OIL, Mar. and Apr., 1995

[27]  Lea J.F. and Winkler H.W. New andExpected Developments in artificial lift, SPE27990

[28]  Clegg J.D. et al. NewRecommendations and Comparisons for Artificial Lift Method Selection, SPE24834

[29]  Petrie H.L.et al. Jet Pumping OilWells, World Oil,Nov. 1983

[30]  Saveth K.J. and KleinS.T.TheProgressing Cavity Pump: Principle and Capabilities,SPE18873

[31]  Perkins T.K. Jr. & KernL.R.Widths of hydraulic fractures. JPT. Sept. 1961

[32]  Nordgren. R. P. Propagation of avertical hydraulic fracture. SPEJ, Aug.1972

[33]  Geertsma J& de Clerk, F.A.: Arapid method of predicting width and extent of hydraulically induced fractures.JPT, Dec.,1969.

[34]  Smith J. E.: Design of hydraulicfracture treatment. SPE 1286

[35]  Babcook R.E. Distribution ofproppant in vertical fracture. Producers Monthly. Nov. 1967.

[36]  Novonty E.J.  Propant transport. SPE 6813

[37]  Nolte K.G: Interpretation offracture pressure. SPE 8297

[38]  Agarwal, R G. et al: Evaluationand performance prediction of low-permeability gas well stimulated by massiveHydraulic fracturing. JPT, March, 1979

[39]  Nguyen H X and Larsen D B:Fracture Height Containment by Creating an Artificial Barrier with a NewAdditive. SPE 12061, 1983

[40]  Hossain M.M.,Rahman M.K: Hydraulicfracture initiation and propagation:roles of wellbore trajectory, perforationand stress regmes. J.Pet.Sci.Eng,2000,(27):129-149.

[41]  刘新全,易明新,赵金钰等:粘弹性表面活性剂(VES)压裂液.油田化学[J] 2001.9.25

[42]  Mathew Samuel, Dan Polsonetc.Viscoelastic Surfactant Fracturing Fluids: Applications in Low PermeabilityReservoirs. paper SPE 630322,presented at the 2000SPE RockyMountain Regional/low PermeabilityReservoirs Symposium and Exhibition held in Demver, Colorado,12-15 March 2000.

[43]  Smith M. B,et al, Tip Screen-OutFracturing: A technique for soft ,unstable formation, SPE May 1987.

[44]  John E.Smith, Highsand-concentration Fracturing Treatments, WORD OIL, 3,1990

[45]  Benelkadi S., Belhaouas R., andSahar M., Sonatrach, Use of After Closure Analysis to Improve HydraulicFracturing Designs, Application onAlgeria’s In-Adaoui gas Field. SPE80936

[46]  胡永全,赵金洲等.重复压裂技术进展.天然气工业[J].2003.23(2)

[47]  Elbel JLandMack MGRefracturingObservations and TheoriesSPE 25464

[48]  Nierode D.E. and Kruk K.F. AnEvaluation of Acid Fluid Loss Additives Retarded Acids, and Acidized FractureConductivity,SPE 4549

[49]  Mumallah N.A. Factors Influencingthe Reaction Rate of Hydrochloric Acid and Carbonate Rock, SPE 21036

[50]  Bartko K.M. and Conway M.W.Field and Laboratory Experience in ClosedFracture Acidizing the Lisburne Field, Prudhoe Bay, Alaska SPE24855

[51]  Li Y. and Sullivan R.B. AnOverview of Current Acid Fracturing Technology With Recent Implications forEmulsified Acids,SPE26581

[52]  Kenneth R.K. and Chris M.S.Acidizing Sandstone Formations With Fluoboric Acid, SPE9387

[53]  HallB.E.A New Technique for Generating In-SituHydrofluoric Acid for Deep Clay Damage RemovalSPE6512

[54]  Templeton C.C. and Richardson E.A., Karnes,G.T. and Lybarger, J.H.: Self-Generating Mud Acid,SPE5153

[55]  Lund K., Fogler, H.S. and McCuneC.C.:Kinetic Rate Expressions for Reactions of Selected Minerals with HCl andHF Mixtures,SPE4348

[56]  Lund K. ,Fogler,H.S. and McCuneC.C.:On predicting the flow and Reaction ofHCl/HF Acid Mixtures in Porous Sandstone CoresSoc.Pet.Eng.J.(Oct. 1976) 248-260; Trans., AIME,261.

[57]  Frick T.P. and Economides M.J. State-Of-The-ArtIn The Matrix Stimulation Of Horizontal Wells, SPE26997

[58]  Michael J. E. , Kamel B. N. andRichard C. K. Matrix Stimulation Method for Horizontal Wells,SPE19719

[59]  李颖川. 注蒸汽井筒动态预测改进模型. 西南石油学院学报,1993.151

[60]  Ramey H. J. Jr. Wellbore HeatTransmission. JPTApr. 1962

[61]  Tang Y. and Ozkan E. et al.Performance of Horizontal Wells Completed with Slotted Liners and Perforations.SPE 65516

[62]  Going W.S., Chok B.L.et al.Intelligent well technology: are we ready for closed loop control?. SPE 99834

[63]  Behrmann L.A., McDonald B.Underbalance or extreme overbalance. SPE 31083