-
1 视频
-
2 章节测验
能量守恒定律(energy conservation law)即热力学第一定律是指在一个封闭(孤立)系统的总能量保持不变。其中总能量一般说来已不再只是动能与势能之和,而是静止能量(固有能量)、动能、势能三者的总量。
能量守恒定律可以表述为:一个系统的总能量的改变只能等于传入或者传出该系统的能量的多少。总能量为系统的机械能、热能及除热能以外的任何内能形式的总和。
如果一个系统处于孤立环境,即不可能有能量或质量传入或传出系统。对于此情形,能量守恒定律表述为:
“孤立系统的总能量保持不变。”
能量既不会凭空产生,也不会凭空消失,它只会从一种形式转化为另一种形式,或者从一个物体转移到其它物体,而能量的总量保持不变。能量守恒定律是自然界普遍的基本定律之一。
热力学第二定律(second law of thermodynamics),热力学基本定律之一,其表述为:不可能把热从低温物体传到高温物体而不产生其他影响,或不可能从单一热源取热使之完全转换为有用的功而不产生其他影响,或不可逆热力过程中熵的微增量总是大于零。又称“熵增定律”,表明了在自然过程中,一个孤立系统的总混乱度(即“熵”)不会减小。
1824年,法国工程师萨迪·卡诺提出了卡诺定理。德国人克劳修斯(Rudolph Clausius)和英国人开尔文(Lord Kelvin)在热力学第一定律建立以后重新审查了卡诺定理,意识到卡诺定理必须依据一个新的定理,即热力学第二定律。他们分别于1850年和1851年提出了克劳修斯表述和开尔文表述。这两种表述在理念上是等价的。
违背热力学第二定律的永动机称为第二类永动机。
热力学第三定律是热力学的四条基本定律之一,其描述的是热力学系统的熵在温度趋近于绝对零度时趋于定值。而对于完整晶体,这个定值为零。由于这个定律是由瓦尔特·能斯特归纳得出后进行表述,因此又常被称为能斯特定理或能斯特假定。1923年,吉尔伯特·路易斯和梅尔·兰德尔对此一定律重新提出另一种表述。
随着统计力学的发展,这个定律正如其他热力学定律一样得到了各方面解释,而不再只是由实验结果所归纳而出的经验定律。
这个定律有适用条件的限制,虽然其应用范围不如热力学第一、第二定律广泛,但仍对很多学门有重要意义——特别是在物理化学领域。
如果两个热力学系统中的每一个都与第三个热力学系统处于热平衡(温度相同),则它们彼此也必定处于热平衡。这一结论称做“热力学第零定律”。
热力学第零定律(英语:Zeroth Law of Thermodynamics),又称热平衡定律,是热力学的四条基本定律之一,是一个关于互相接触的物体在热平衡时的描述,以及为温度提供理论基础。最常用的定律表述是:
“若两个热力学系统均与第三个系统处于热平衡状态,此两个系统也必互相处于热平衡。”
换句话说,第零定律是指:在一个数学二元关系之中,热平衡是递移的。