目录

  • 1 美国数学建模竞赛
    • 1.1 竞赛简要介绍
    • 1.2 赛事动员
    • 1.3 2026年竞赛指南
    • 1.4 2025年竞赛指南
    • 1.5 2024年竞赛指南
    • 1.6 2022年竞赛指南
    • 1.7 2023年竞赛指南
  • 2 培训安排*****
    • 2.1 集中培训时间
      • 2.1.1 竞赛过程
      • 2.1.2 参赛队伍确定*****
    • 2.2 2026年培训安排
    • 2.3 2025年培训安排
    • 2.4 2024年培训安排
    • 2.5 2023年培训安排
  • 3 学习资料
    • 3.1 美赛经验谈
    • 3.2 美赛概述及论文写作
    • 3.3 美赛论文格式
    • 3.4 数学软件使用
    • 3.5 论文排版工具
      • 3.5.1 LaTeX 排版
      • 3.5.2 Word 排版
      • 3.5.3 数学公式的英文表达
    • 3.6 建模数据的获取
    • 3.7 常用算法
      • 3.7.1 数字图像处理算法
      • 3.7.2 排队论
      • 3.7.3 线性回归
        • 3.7.3.1 优秀论文
      • 3.7.4 多元统计分析之聚类、主成分分析
      • 3.7.5 微分方程
      • 3.7.6 插值与拟合
      • 3.7.7 智能算法
      • 3.7.8 机器学习
        • 3.7.8.1 数模中的机器学习
        • 3.7.8.2 决策树和集成学习
        • 3.7.8.3 机器学习参考书
        • 3.7.8.4 支持向量机
      • 3.7.9 综合评价模型和预测模型
        • 3.7.9.1 1导论
        • 3.7.9.2 2理想解法[TOSIS]-综合评价方法
        • 3.7.9.3 3秩和比法[RSR]-综合评价方法
        • 3.7.9.4 4模糊综合评价方法
        • 3.7.9.5 5层次分析法[AHP]-综合评价方法
        • 3.7.9.6 6主成分分析法[PCA]-综合评价方法
        • 3.7.9.7 7灰色预测模型[GM(1,1)]和灰色综合评价
        • 3.7.9.8 8时间序列预测模型
        • 3.7.9.9 9马尔科夫预测模型
        • 3.7.9.10 O奖论文赏析:2021年D题
      • 3.7.10 最优化问题
        • 3.7.10.1 最短路
        • 3.7.10.2 行遍性问题
        • 3.7.10.3 最小生成树
        • 3.7.10.4 数学规划
        • 3.7.10.5 非线性规划
    • 3.8 O奖论文赏析
      • 3.8.1 2019年C题
      • 3.8.2 2019年O奖论文资料
    • 3.9 M奖论文赏析
    • 3.10 H奖论文赏析
    • 3.11 思考
  • 4 经典赛题和获奖论文
    • 4.1 2021美赛D题
    • 4.2 2021美赛A题
    • 4.3 2019美赛C题
    • 4.4 2020美赛C题
    • 4.5 2013美赛B题
    • 4.6 2014美赛B题
    • 4.7 2021国赛C题
    • 4.8 2021美赛C题
    • 4.9 2017美赛E题
  • 5 美赛校内选拔赛
    • 5.1 2022年校内选拔赛题及提交论文入口
    • 5.2 2021年选拔赛要求
    • 5.3 2021年校内选拔赛题
    • 5.4 2021年校内选拔提交论文入口
      • 5.4.1 A题提交
      • 5.4.2 B题提交
      • 5.4.3 C题提交
      • 5.4.4 D题提交
    • 5.5 2021年提交近期学习笔记入口
    • 5.6 2023年校内选拔竞赛
  • 6 正式竞赛安排
    • 6.1 2025年竞赛论文提交
    • 6.2 2024年竞赛论文提交
    • 6.3 2023年竞赛安排
    • 6.4 2022年竞赛安排
  • 7 微分方程建模及数值解
    • 7.1 微分建模及差分解法
    • 7.2 往年微分方程模型详解
2022年竞赛指南
  • 1 20221年赛事介绍
  • 2 2022年竞赛指南
  • 3 2022竞赛中英文对照

Each team may choose any one of the six problem choices and should submit a solution to only one problem.

MCM Problem A (continuous)
MCM Problem B (discrete)
MCM Problem C (data insights)
ICM Problem D (operations research/network science)
ICM Problem E (sustainability)
ICM Problem F (policy)


                           

Prizes/Certificates:


The International COMAP Scholarship Award will be awarded to the four(4) top MCM/ICM teams from any of the participating countries; $9000 being split among the team members and $1000 to the school represented. Awards will be announced on or before April 30th each year.


After the results are issued, each successfully participating team advisor and student will receive a certificate of participation. You may login to the contest web site using the Advisor Login link to view and print your team's certificates. Click here to download MCM/ICM certificates.

  • MCM Awards

  • (Problem A, B and C)
  • The Ben Fusaro Award will be accorded to an especially creative paper and will be chosen from the contest finalists.

  • The Frank R. Giordano Award began in 2012. It honors Brig. Gen. (ret) Frank Giordano who directed the MCM for 20 years. This award goes to a paper that demonstrates true excellence in the execution of the modeling process.

  • ICM Awards

  • (Problem D, E and F)
  • The Leonhard Euler Award is presented to a team selected by the head judge of the ICM's Problem D. The criteria are: 1) a paper in the Meritorious/Finalist/Outstanding rating; 2) contains especially creative and innovative modeling; and 3) shows good understanding of interdisciplinary science. The award honors the name of a 18th-century Swiss applied mathematician, who was known for the breadth of his research applications, volume of written work, excellent teaching, and interdisciplinarity.

  • The Rachel Carson Award honors an American conservationist whose book "Silent Spring" initiated the global environmental movement and whose work spanned many disciplines concerned with the local and global environments. This award is presented to a team selected by the Head Judge of ICM Problem E for excellence in using scientific theory and data in its modeling.

  • Vilfredo Pareto was an Italian scholar, modeler and problem solver, who at various times was an engineer, sociologist, economist, political scientist, mathematician, and philosopher. He lived and worked in the late 19th and early 20th centuries. The ICM Pareto Award for outstanding modeling in the Policy Modeling problem (ICM Problem F) honors the work and legacy of this famous social science problem solver. In particular for this award, the head judge seeks to highlight a paper that best models the more dynamic and challenging contextual human elements that make simplification or refinement of policy models so difficult.



The Institute for Operations Research and the Management Sciences (INFORMS) is the largest society in the world for professionals in the field of operations research (OR), management science (MS), and analytics. INFORMS has long recognized the importance of involving undergraduate students and faculty in an unscripted process of mathematical modeling whose problems contain many of the modern elements seen by its membership. The MCM/ICM exemplifies these characteristics. Consequently, INFORMS has been an active supporter of the MCM/ICM since its inception.

INFORMS carefully selects and designates a single Outstanding team from each of the six problems - A, B, C, D, E, F - as an INFORMS Outstanding winning team whose modeling and analyses best exemplify the style and content reflected in its membership's professional practice. Each student receives a letter of congratulations from the current INFORMS President and a complimentary one-year INFORMS student membership. Each associated faculty advisor receives a letter of congratulations and appreciation from the current INFORMS President, along with complimentary one-year access to the full suite of award-winning INFORMS journals.



The Society for Industrial and Applied Mathematics (SIAM) will designate six teams, one each for problems A, B, C, D, E, and F from the MCM/ICM as an SIAM winner.

 


The Mathematical Association of America (MAA) will designate up to six teams, at most one each for problems A, B, C, D, E, and F from the MCM/ICM as an MAA winner.

 


The American Statistical Association (ASA) will designate one Outstanding team from MCM Problem C as a ASA winner.

 


The American Mathematical Society (AMS) will designate six teams, one each for problems A, B, C, D, E, and F from the MCM/ICM as an AMS winner.