目录

  • 数字电路中的数和编码
    • ● 十进制数的二进制编码
      • ● 有权码和无权码
    • ● 格雷码
      • ● 8421BCD码的运算
    • ● 用补码表示负数
  • 数字逻辑基础
    • ● 逻辑变量和逻辑系统
      • ● 基本逻辑运算
      • ● 布尔代数公理及其他常用逻辑运算
      • ● 真值表
    • ● 逻辑代数的基本定律
      • ● 布尔代数的常用公式
      • ● 布尔代数的三个规则
    • ● 逻辑函数的标准表达式
      • ● 逻辑函数的最小项表达式
      • ● 逻辑函数的最大项表达式
      • ● 最小项表达式和最大项表达式的关系
      • ● 非标准表达式到标准表达式的转换
      • ● 任意项及其表示
    • ● 代数法化简逻辑函数
    • ● 卡诺图法化简逻辑函数
      • ● 逻辑函数的卡诺图表示
      • ● 卡诺图化简的步骤及举例
  • 组合逻辑电路
    • ● 组合逻辑电路的特点
    • ● 组合逻辑电路的分析
      • ● 组合逻辑电路的分析步骤
      • ● 组合逻辑电路分析举例
    • ● 组合逻辑电路的设计
      • ● 组合逻辑电路的设计步骤
      • ● 组合逻辑电路的实现方式
      • ● 组合逻辑电路设计举例
    • ● 中规模组合逻辑电路
      • ● 加法器和减法器
      • ● 编码器
      • ● 译码器
      • ● 数据选择器
      • ● 数值比较器
    • ● 中规模组合电路用于逻辑设计
      • ● 译码电路用作函数发生器
      • ● 用数据选择器作函数发生器
      • ● 用全加器作为数码转化器
    • ● 组合逻辑电路的竞争与冒险
      • ● 冒险的分类
      • ● 冒险的识别和消除
  • 集成触发器
    • ● 时序逻辑电路的特点
    • ● 触发器的基本特性
    • ● 触发器的记忆作用
    • ● 电位型触发器
      • ● 基本RS触发器
      • ● 可控RS触发器
      • ● 其他可控触发器
      • ● 可控电位型触发器的局限性
      • ● 电位型触发器的应用:锁存器
    • ● 钟控型触发器
      • ● 主从触发器
      • ● 边沿触发器
    • ● 触发器的逻辑符号
    • ● CMOS触发器
      • ● 带使能端D触发器
      • ● CMOS主从D触发器
      • ● CMOS JK触发器
    • ● 触发器的转换
    • ● 集成触发器的时间参数
    • ● 钟控触发器构成的常用时序电路
      • ● 寄存器
      • ● 移位寄存器
      • ● 计数器
  • 时序逻辑电路
    • ● 时序电路的分类和描述
      • ● 时序电路的分类
      • ● 时序电路的描述
    • ● 同步时序电路的分析
      • ● 同步时序电路的一般框图
      • ● 序列信号发生器
    • ● 移位寄存器构成的时序电路
      • ● 环形计数器
      • ● 扭环形计数器
    • ● 常用时序电路的设计
      • ● 计数器的设计
      • ● 序列信号发生器的设计
      • ● M序列发生器
    • ● 异步计数器
    • ● 中规模时序集成电路
      • ● 中规模同步计数器
      • ● 中规模计数器的应用
      • ● 中规模计数器的级联
      • ● 中规模移位寄存器
    • ● 计数器用于逻辑设计
    • ● 一般时序电路的分析
      • ● 一般时序电路的分析过程和特点举例
    • ● 一般时序电路的设计
      • ● 状态表的建立
      • ● 状态表的简化
      • ● 状态分配
  • 大规模数字集成电路
    • ● 大规模数字集成电路的概述
    • ● 存储器
      • ● 存储器的分类
      • ● ROM作为逻辑器件
      • ● 存储器容量的扩展
    • ● 可编程逻辑阵列
    • ● 可编程阵列逻辑
    • ● 通用阵列逻辑
    • ● 复杂可编程逻辑器件
    • ● 现场可编程门阵列
    • ● CPLD和FPGA的比较
组合逻辑电路的特点


组合逻辑电路

数字电路根据逻辑功能的不同特点,可以分成两大类,一类叫组合逻辑电路(简称组合电路),另一类叫做时序逻辑电路(简称时序电路)。组合逻辑电路在逻辑功能上的特点是任意时刻的输出仅仅取决于该时刻的输入,与电路原来的状态无关。而时序逻辑电路在逻辑功能上的特点是任意时刻的输出不仅取决于当时的输入信号,而且还取决于电路原来的状态,或者说,还与以前的输入有关。

原理

组合逻辑电路是指在任何时刻,输出状态只决定于同一时刻各输入状态的组合,而与电路以前状态无关,而与其他时间的状态无关。其逻辑函数如下:

Li=f(A1,A2,A3……An) (i=1,2,3…m)

其中,A1—An为输入变量,Li为输出变量。

组合逻辑电路的特点归纳如下:

① 输入、输出之间没有返馈延迟通道;

② 电路中无记忆单元。

对于第一个逻辑表达公式或逻辑电路,其真值表可以是惟一的,但其对应的逻辑电路或逻辑表达式可能有多种实现形式,所以,一个特定的逻辑问题,其对应的真值表是惟一的,但实现它的逻辑电路是多种多样的。在实际设计工作中,如果由于某些原因无法获得某些门电路,可以通过变换逻辑表达式变电路,从而能使用其他器件来代替该器件。同时,为了使逻辑电路的设计更简洁,通过各方法对逻辑表达式进行化简是必要的。组合电路可用一组逻辑表达式来描述。设计组合电路直就是实现逻辑表达式。要求在满足逻辑功能和技术要求基础上,力求使电路简单、经济、可靠、实现组合逻辑函数的途径是多种多样的,可采用基本门电路,也可采用中、大规模集成电路。其一般设计步骤为:

① 分析设计要求,列真值表;

② 进行逻辑和必要变换。得出所需要的最简逻辑表达式;

③ 画逻辑图。