目录

  • 数字电路中的数和编码
    • ● 十进制数的二进制编码
      • ● 有权码和无权码
    • ● 格雷码
      • ● 8421BCD码的运算
    • ● 用补码表示负数
  • 数字逻辑基础
    • ● 逻辑变量和逻辑系统
      • ● 基本逻辑运算
      • ● 布尔代数公理及其他常用逻辑运算
      • ● 真值表
    • ● 逻辑代数的基本定律
      • ● 布尔代数的常用公式
      • ● 布尔代数的三个规则
    • ● 逻辑函数的标准表达式
      • ● 逻辑函数的最小项表达式
      • ● 逻辑函数的最大项表达式
      • ● 最小项表达式和最大项表达式的关系
      • ● 非标准表达式到标准表达式的转换
      • ● 任意项及其表示
    • ● 代数法化简逻辑函数
    • ● 卡诺图法化简逻辑函数
      • ● 逻辑函数的卡诺图表示
      • ● 卡诺图化简的步骤及举例
  • 组合逻辑电路
    • ● 组合逻辑电路的特点
    • ● 组合逻辑电路的分析
      • ● 组合逻辑电路的分析步骤
      • ● 组合逻辑电路分析举例
    • ● 组合逻辑电路的设计
      • ● 组合逻辑电路的设计步骤
      • ● 组合逻辑电路的实现方式
      • ● 组合逻辑电路设计举例
    • ● 中规模组合逻辑电路
      • ● 加法器和减法器
      • ● 编码器
      • ● 译码器
      • ● 数据选择器
      • ● 数值比较器
    • ● 中规模组合电路用于逻辑设计
      • ● 译码电路用作函数发生器
      • ● 用数据选择器作函数发生器
      • ● 用全加器作为数码转化器
    • ● 组合逻辑电路的竞争与冒险
      • ● 冒险的分类
      • ● 冒险的识别和消除
  • 集成触发器
    • ● 时序逻辑电路的特点
    • ● 触发器的基本特性
    • ● 触发器的记忆作用
    • ● 电位型触发器
      • ● 基本RS触发器
      • ● 可控RS触发器
      • ● 其他可控触发器
      • ● 可控电位型触发器的局限性
      • ● 电位型触发器的应用:锁存器
    • ● 钟控型触发器
      • ● 主从触发器
      • ● 边沿触发器
    • ● 触发器的逻辑符号
    • ● CMOS触发器
      • ● 带使能端D触发器
      • ● CMOS主从D触发器
      • ● CMOS JK触发器
    • ● 触发器的转换
    • ● 集成触发器的时间参数
    • ● 钟控触发器构成的常用时序电路
      • ● 寄存器
      • ● 移位寄存器
      • ● 计数器
  • 时序逻辑电路
    • ● 时序电路的分类和描述
      • ● 时序电路的分类
      • ● 时序电路的描述
    • ● 同步时序电路的分析
      • ● 同步时序电路的一般框图
      • ● 序列信号发生器
    • ● 移位寄存器构成的时序电路
      • ● 环形计数器
      • ● 扭环形计数器
    • ● 常用时序电路的设计
      • ● 计数器的设计
      • ● 序列信号发生器的设计
      • ● M序列发生器
    • ● 异步计数器
    • ● 中规模时序集成电路
      • ● 中规模同步计数器
      • ● 中规模计数器的应用
      • ● 中规模计数器的级联
      • ● 中规模移位寄存器
    • ● 计数器用于逻辑设计
    • ● 一般时序电路的分析
      • ● 一般时序电路的分析过程和特点举例
    • ● 一般时序电路的设计
      • ● 状态表的建立
      • ● 状态表的简化
      • ● 状态分配
  • 大规模数字集成电路
    • ● 大规模数字集成电路的概述
    • ● 存储器
      • ● 存储器的分类
      • ● ROM作为逻辑器件
      • ● 存储器容量的扩展
    • ● 可编程逻辑阵列
    • ● 可编程阵列逻辑
    • ● 通用阵列逻辑
    • ● 复杂可编程逻辑器件
    • ● 现场可编程门阵列
    • ● CPLD和FPGA的比较
可编程阵列逻辑

基本结构  

输出和反馈结构由可编程的与阵列和固定的或阵列组成,没有输出反馈信号,输入和输出引出端是固定的,不能由用户自行定义。只适用于简单的组合逻辑电路设计。  

1.输入和输出型结构

具有三态输出缓冲器和反馈缓冲器。反馈缓冲器可使三态输出反馈到与阵列输入端,构成简单的触发器,使输出具有记忆功能。用户通过编程可以控制三态输出缓冲器的状态,从而实现对输入/输出引出端数目的任意配置。利用可编程输入/输型PAL器件,可设计编码器、译码器、数据选择器等组合逻辑电路,也可完成串行数据移位和循环等操作。

2.带反馈的寄存器型结构

具有记忆功能,由于整个器件只有一个共用时钟和一个输出使能输入端,因此可以构成计数器等同步时序逻辑电路。  

3.带异或的寄存器型结构

与阵列的输出分成两组相或,经异或运算后加到D触发器的输入端,使得逻辑电路的设计更加灵活、方便。

4.算术选通反馈型结构

在异或型PAL的基础上增加算术选通电路,产生输入信号和反馈信号的4个最大项。算术选通电路产生的4个最大项,加到与阵列输入端,通过对与阵列编程,可得到16种逻辑组合输出。

算术选通反馈型PAL器件,主要用于实现快速的加、减、大于、小于等算术逻辑电路。

5.乘积项公用输出结构

相邻两个逻辑单元乘积项可同时接到两个或门。

6.宏单元输出结构

PAL22V10的宏单元由一个触发器和两个可编程多路选择器组成,通过对两个多路选择器进行编程,每个宏单元可以设置4种输出结构形式和两种反馈信号,因而具有更强的通用性和灵活性。

应用

PAL器件速度快,功耗低,并有多种结构类型,可用来设计各种组合逻辑电路和时序逻辑电路。设计时主要考虑以下几个方面:

(1) 一个PAL器件的输入/输出引出端总数是有限的。

(2) 每个PAL器件输出乘积项数目是有限的。

(3) 在具有寄存器和宏单元结构的PAL器件中,当逻辑单元中的寄存器作为内部反馈寄存器使用时,需占用一个逻辑单元,则对应的输出引出端不能再作它用;当逻辑单元作为组合输出时,也占用一个逻辑单元,其内部寄存器也不能使用。