概率的性质——配对问题
上一节
下一节

学习目标:
1、概率的加法公式、减法公式;
2、利用概率的基本性质,进行概率计算。
重点:概率性质的计算;
难点:概率的一般加法公式、减法公式。
概率公理化定义
柯尔莫哥洛夫于1933年给出了概率的公理化定义,如下:
设E是随机试验,S是它的样本空间。对于E的每一事件A赋于一个实数,记为P(A),称为事件A的概率。这里P(A)是一个集合函数,P(A)要满足下列条件:
(1)非负性:对于每一个事件A,有P(A)≥0;
(2)规范性:对于必然事件,有P(Ω)=1;
(3)可列可加性:设A1,A2……是两两互不相容的事件,即对于i≠j,Ai∩Aj=φ,(i,j=1,2……),则有P(A1∪A2∪……)=P(A1)+P(A2)+……
根据概率公理化定义,得到以下不同的性质:
性质1:
;
性质2:(有限可加性)当n个事件A1,…,An两两互不相容时:
;
性质3:对于任意一个事件A:
;
性质4:当事件A,B满足A包含于B时:
,
;
性质5:对于任意一个事件A,
;
性质6:对任意两个事件A和B,
;
性质7:(加法公式)对任意两个事件A和B,
![]()



