目录

  • 1 数字电路中的数和编码
    • 1.1 十进制数的二进制编码
      • 1.1.1 有权码和无权码
    • 1.2 格雷码
      • 1.2.1 8421BCD码的运算
    • 1.3 用补码表示负数
  • 2 数字逻辑基础
    • 2.1 逻辑变量和逻辑系统
      • 2.1.1 基本逻辑运算
      • 2.1.2 布尔代数公理及其他常用逻辑运算
      • 2.1.3 真值表
    • 2.2 逻辑代数的基本定律
      • 2.2.1 布尔代数的常用公式
      • 2.2.2 布尔代数的三个规则
    • 2.3 逻辑函数的标准表达式
      • 2.3.1 逻辑函数的最小项表达式
      • 2.3.2 逻辑函数的最大项表达式
      • 2.3.3 最小项表达式和最大项表达式的关系
      • 2.3.4 非标准表达式到标准表达式的转换
      • 2.3.5 任意项及其表示
    • 2.4 代数法化简逻辑函数
    • 2.5 卡诺图法化简逻辑函数
      • 2.5.1 逻辑函数的卡诺图表示
      • 2.5.2 卡诺图化简的步骤及举例
  • 3 组合逻辑电路
    • 3.1 组合逻辑电路的特点
    • 3.2 组合逻辑电路的分析
      • 3.2.1 组合逻辑电路的分析步骤
      • 3.2.2 组合逻辑电路分析举例
    • 3.3 组合逻辑电路的设计
      • 3.3.1 组合逻辑电路的设计步骤
      • 3.3.2 组合逻辑电路的实现方式
      • 3.3.3 组合逻辑电路设计举例
    • 3.4 中规模组合逻辑电路
      • 3.4.1 加法器和减法器
      • 3.4.2 编码器
      • 3.4.3 译码器
      • 3.4.4 数据选择器
      • 3.4.5 数值比较器
    • 3.5 中规模组合电路用于逻辑设计
      • 3.5.1 译码电路用作函数发生器
      • 3.5.2 用数据选择器作函数发生器
      • 3.5.3 用全加器作为数码转化器
    • 3.6 组合逻辑电路的竞争与冒险
      • 3.6.1 冒险的分类
      • 3.6.2 冒险的识别和消除
  • 4 集成触发器
    • 4.1 时序逻辑电路的特点
    • 4.2 触发器的基本特性
    • 4.3 触发器的记忆作用
    • 4.4 电位型触发器
      • 4.4.1 基本RS触发器
      • 4.4.2 可控RS触发器
      • 4.4.3 其他可控触发器
      • 4.4.4 可控电位型触发器的局限性
      • 4.4.5 电位型触发器的应用:锁存器
    • 4.5 钟控型触发器
      • 4.5.1 主从触发器
      • 4.5.2 边沿触发器
    • 4.6 触发器的逻辑符号
    • 4.7 CMOS触发器
      • 4.7.1 带使能端D触发器
      • 4.7.2 CMOS主从D触发器
      • 4.7.3 CMOS JK触发器
    • 4.8 触发器的转换
    • 4.9 集成触发器的时间参数
    • 4.10 钟控触发器构成的常用时序电路
      • 4.10.1 寄存器
      • 4.10.2 移位寄存器
      • 4.10.3 计数器
  • 5 时序逻辑电路
    • 5.1 时序电路的分类和描述
      • 5.1.1 时序电路的分类
      • 5.1.2 时序电路的描述
    • 5.2 同步时序电路的分析
      • 5.2.1 同步时序电路的一般框图
      • 5.2.2 序列信号发生器
    • 5.3 移位寄存器构成的时序电路
      • 5.3.1 环形计数器
      • 5.3.2 扭环形计数器
    • 5.4 常用时序电路的设计
      • 5.4.1 计数器的设计
      • 5.4.2 序列信号发生器的设计
      • 5.4.3 M序列发生器
    • 5.5 异步计数器
    • 5.6 中规模时序集成电路
      • 5.6.1 中规模同步计数器
      • 5.6.2 中规模计数器的应用
      • 5.6.3 中规模计数器的级联
      • 5.6.4 中规模移位寄存器
    • 5.7 计数器用于逻辑设计
    • 5.8 一般时序电路的分析
      • 5.8.1 一般时序电路的分析过程和特点举例
    • 5.9 一般时序电路的设计
      • 5.9.1 状态表的建立
      • 5.9.2 状态表的简化
      • 5.9.3 状态分配
  • 6 大规模数字集成电路
    • 6.1 大规模数字集成电路的概述
    • 6.2 存储器
      • 6.2.1 存储器的分类
      • 6.2.2 ROM作为逻辑器件
      • 6.2.3 存储器容量的扩展
    • 6.3 可编程逻辑阵列
    • 6.4 可编程阵列逻辑
    • 6.5 通用阵列逻辑
    • 6.6 复杂可编程逻辑器件
    • 6.7 现场可编程门阵列
    • 6.8 CPLD和FPGA的比较
一般时序电路的设计


时序逻辑电路应用举例

抢答器 

在智力竞赛中,参赛者通过抢先按动按钮,取得答题权。图1是由4个D触发器和2个“与非”门、1个“非”门等组成的4人抢答电路。抢答前,主持人按下复位按钮SB,4个D触发器全部清0,4个发光二极管均不亮,“与非”门G1输出为0,三极管截止,扬声器不发声。同时,G2输出为1, 时钟信号CP经G3送入触发器的时钟控制端。此时,抢答按钮SB1~SB4未被按下,均为低电平,4个D触发器输入的全是0,保持0状态不变。时钟信号CP可用555定时器组成多谐振荡器的输出。

当抢答按钮SB1~SB4中有一个被按下时,相应的D触发器输出为1,相应的发光二极管亮,同时,G1输出为1,使扬声器响,表示抢答成功,另外G1输出经G2反相后,关闭G3,封锁时钟信号CP,此时,各触发器的时钟控制端均为1,如果再有按钮被按下,就不起作用了,触发器的状态也不会改变。 抢答完毕,复位清零,准备下次抢答。

八路彩灯控制器

八路彩灯控制器由编码器、驱动器和显示器(彩灯)组成,编码器根据彩灯显示的花型按节拍送出八位状态编码信号,通过驱动器使彩灯点亮、熄灭。给出的八路彩灯控制器电路图中,编码器用两片双向移位寄存器74LS194实现,接成自启动脉冲分配器(扭环形计数器),其中D1为左移方式,D2为右移方式。驱动器电路,当寄存器输出Q为高电平时,三极管T导通,继电器K通电,其动合触点闭合,彩灯亮;当Q为低电平时,三极管截止,继电器复位,彩灯灭。

工作时,先用负脉冲清零,使寄存器输出全部为0,然后在节拍脉冲(可由555定时器构成的多谐振荡器输出)的控制下,寄存器的各个输出Q按下表所示的状态变化,每8个节拍重复一次。这里假定8路彩灯的花型是:由中间向两边对称地逐次点亮,全亮后,再由中间向两边逐次熄灭。