目录

  • 第一章
    • ● 绪论
    • ● 计算误差
  • 数值积分
    • ● 引言
    • ● 梯形积分和辛普森积分
    • ● 反常积分
    • ● 高斯积分
    • ● 高维积分和数值微分
  • 非线性方程的数值解法
    • ● 引言
    • ● 二分法
    • ● 迭代法
    • ● 牛顿迭代法
    • ● 弦截法
    • ● 最优化方法
  • 线性方程组的解法
    • ● 高斯消去法
    • ● 高斯主元素消去法
    • ● LU分解法
    • ● 迭代法
    • ● 三对角矩阵的解法
  • 常微分方程的数值解法
    • ● 引言
    • ● 欧拉法
    • ● 龙格库塔法
    • ● 阿达姆斯法
    • ● 二阶常微分方程的边值问题
  • 偏微分方程的数值解法
    • ● 引言
    • ● 对流方程
    • ● 抛物线方程
    • ● 椭圆方程
  • 插值
    • ● 引言
    • ● 多项式插值
    • ● 拉格朗日插值
    • ● 牛顿均差插值
    • ● 三次样条插值
  • 蒙特卡罗方法
    • ● 引言
    • ● 蒙特卡罗方法的基本思想
    • ● 大数法则和中心极限定理
    • ● 蒙卡方法的基本步骤
    • ● 随机变量和随机数
  • 上机练习1
    • ● 上机内容
    • ● 谐振子与厄米多项式简介
    • ● 阶乘计算
    • ● 代码框架
    • ● 计算结果绘图
  • 上机练习2
    • ● 势阱和单摆周期的计算
    • ● 代码框架
    • ● 计算结果绘图
  • 上机练习3
    • ● 带空气阻力的抛体运动
    • ● 代码框架
    • ● 计算结果绘图
  • 上机练习4
    • ● 解线性方程组
    • ● 代码框架
  • 上机练习5
    • ● 解常微分方程
    • ● 代码框架
    • ● 计算结果绘图
  • 上机练习6
    • ● 热传导和亥姆霍兹方程
    • ● 代码框架
    • ● 计算结果绘图
  • 上机练习7
    • ● 插值和离散傅里叶变换
    • ● 离散傅里叶变换简介
    • ● 代码框架
    • ● 计算结果绘图
  • 上机练习8
    • ● 椭圆方程的MC解法
    • ● 代码框架
    • ● 计算结果绘图
计算结果绘图

Gnuplot中自定义函数,并绘图

利用公式(5),定义函数,绘图

v0=100

theta=0.8

mk=2.0

g=9.8

y(x)=mk*mk*g*log(1-x/(mk*v0*cos(theta)))+(v0*sin(theta)+mk*g)*x/(v0*cos(theta))

plot y(x) lc "blue" dt 2 t "y(x)"

参数化绘图

也可利用公式(3)和(4),以参数化方式绘图

以时间t为绘图参数

sx(t)=v0*cos(theta)*mk*(1-exp(-t/mk))

sy(t)=-mk*g*t+(v0*sin(theta)+mk*g)*mk*(1-exp(-t/mk))

plot [0:140] sx(t), sy(t) lc "red" t "y(x)"

绘图的其它选修如设定x、y轴的范围,名称等,参见前面练习。