食品微生物学-2022

宁豫昌 张晓静 舒黛廉 周平平

目录

  • 1 绪论
    • 1.1 课程简介
    • 1.2 课程网络资源
    • 1.3 课程考核方式
    • 1.4 前置问题及学习目标
    • 1.5 食品微生物学-绪论
    • 1.6 绪论-章节测试
    • 1.7 绪论-作业
  • 2 微生物形态与结构--原核微生物
    • 2.1 细菌-前置问题及学习目标
    • 2.2 细菌
    • 2.3 细菌-章节测试
    • 2.4 细菌-作业
    • 2.5 放线菌-前置问题及学习目标
    • 2.6 放线菌
    • 2.7 放线菌-章节测试
    • 2.8 放线菌-作业
  • 3 微生物形态与结构--真核微生物
    • 3.1 酵母菌-前置问题及学习目标
    • 3.2 真菌—酵母菌
    • 3.3 酵母菌-章节测试
    • 3.4 酵母菌--作业
    • 3.5 霉菌-前置问题及学习目标
    • 3.6 真菌—霉菌
    • 3.7 霉菌-章节测试
    • 3.8 霉菌-作业
    • 3.9 本节教学PDF
    • 3.10 真菌--蕈菌
  • 4 微生物形态与结构-病毒
    • 4.1 病毒-前置问题及学习目标
    • 4.2 病毒
    • 4.3 新型冠状病毒
    • 4.4 流感病毒
      • 4.4.1 张文宏医生科普传染病知识
    • 4.5 病毒-章节测试
    • 4.6 病毒-作业
  • 5 微生物的营养与培养基
    • 5.1 微生物营养-前置问题及学习目标
    • 5.2 微生物的营养
    • 5.3 微生物营养—章节测试
    • 5.4 微生物营养—作业
    • 5.5 本节教学PDF
    • 5.6 微生物培养基--前置问题及学习目标
    • 5.7 微生物营养—培养基
    • 5.8 微生物培养基—章节测试
    • 5.9 微生物培养基—作业
    • 5.10 本节教学PDF
  • 6 微生物的代谢
    • 6.1 微生物的代谢-前置问题及学习目标
    • 6.2 微生物的代谢--能量代谢
    • 6.3 微生物的代谢--分解代谢
    • 6.4 微生物的代谢--代谢的调节
    • 6.5 微生物的代谢-拓展资源
    • 6.6 微生物的代谢-章节测试
    • 6.7 微生物的代谢-作业
  • 7 微生物的生长及其控制
    • 7.1 微生物的生长及其控制-前置问题及学习目标
    • 7.2 获得微生物纯培养的分离方法
    • 7.3 微生物生长的测定
    • 7.4 微生物的分离纯化与生长测定--章节测试1
    • 7.5 微生物的分离纯化与生长测定--作业1
    • 7.6 微生物的生长繁殖
    • 7.7 微生物的生长--章节测试2
    • 7.8 理化因素对微生物生长的影响
    • 7.9 微生物的生长--章节测试3
    • 7.10 有害微生物的控制
    • 7.11 微生物的控制--章节测试4
    • 7.12 微生物的生长及其控制-作业
    • 7.13 微生物的培养方法
  • 8 微生物的遗传变异和育种
    • 8.1 微生物的遗传变异与育种—前置问题及学习目标
    • 8.2 遗传变异的物质基础
    • 8.3 基因突变和诱变育种
    • 8.4 基因重组和杂交育种
    • 8.5 微生物与基因工程
    • 8.6 微生物遗传性变异与育种—章节测试1
    • 8.7 菌种的衰退、复壮与保藏
    • 8.8 菌种的衰退、复壮与保藏—章节测试2
    • 8.9 微生物的遗传变异和育种—作业
    • 8.10 本章教学PDF
  • 9 微生物的生态
    • 9.1 微生物的生态—前置问题及学习目标
    • 9.2 微生物与生物环境间的相互关系
    • 9.3 微生物与地球生物化学循环
    • 9.4 微生物与污水处理
    • 9.5 微生物生态—章节测试
    • 9.6 微生物生态——作业
    • 9.7 本章教学PDF
  • 10 微生物的分类和鉴定
    • 10.1 微生物的分类鉴定-前置问题及学习目标
    • 10.2 微生物在自然界的地位
    • 10.3 微生物的分类与命名
    • 10.4 微生物分类鉴定的方法
    • 10.5 微生物的分类鉴定-章节测试
    • 10.6 微生物的分类鉴定-作业
  • 11 微生物与食品的腐败变质
    • 11.1 微生物与食品的腐败变质-前置问题及学习目标
    • 11.2 食品中常见的有害细菌
    • 11.3 食品中常见的真菌
    • 11.4 食品腐败变质的主要因素
    • 11.5 食品腐败变质的主要机理
    • 11.6 微生物与食品腐败变质-章节测试
    • 11.7 微生物与食品腐败变质-作业
  • 12 食品中微生物数量的检测技术与指示菌
    • 12.1 食品中微生物数量的检测技术与指示菌-前置问题及学习目标
    • 12.2 食品中菌落总数的测定
    • 12.3 食品中大肠菌群的测定
    • 12.4 食品中致病菌的检测
    • 12.5 拓展资源:食品中微生物的标准检验体系及快速检验体系
    • 12.6 食品中微生物数量的检测技术与指示菌-章节测试
    • 12.7 食品中微生物数量的检测技术与指示菌-作业
  • 13 微生物在食品发酵工业中的应用
    • 13.1 微生物在食品发酵工业中的应用-前置问题及学习目标
    • 13.2 酒精发酵与饮料酒酿造
    • 13.3 乳制品与调味品发酵
    • 13.4 食品添加剂与酶制剂生产
    • 13.5 拓展资源:微生物在食品发酵工业中的应用
    • 13.6 微生物在食品发酵工业中的应用-章节测试
    • 13.7 微生物在食品发酵工业中的应用-作业
  • 14 食品微生物学实验
    • 14.1 实验一 普通光学显微镜的使用与细菌简单染色
    • 14.2 实验二 细菌的革兰氏染色
    • 14.3 实验三 放线菌和酵母菌的形态观察
    • 14.4 实验四 霉菌的制片及形态观察
    • 14.5 实验五  培养基制备与灭菌技术
    • 14.6 实验六 微生物接种与无菌操作技术
    • 14.7 实验七  微生物的分离纯化技术
    • 14.8 实验八 细菌的生理生化试验
    • 14.9 实验九 食品中微生物菌落总数的测定
    • 14.10 实验十  血球计数板测定酵母细胞含量
    • 14.11 拓展资源:酸奶的制作
    • 14.12 拓展资源:GB4789 食品微生物学检验
微生物与地球生物化学循环

  第二节    微生物与地球生物化学循环

自然界的物质处于由无机物转化成有机物,再由有机物转化成无机物的往复循环之中。

微生物是自然界中许多有机物的分解者,如果没有它们的作用,自然界中各类元素及物质就不可能被周而复始地循环利用,生态平衡就会破坏,整个生命世界就会绝灭,人类自然也就无法生存。

生产者:从无机物合成有机物,如植物、微生物

消费者:利用有机物进行生活,如动物

分解者:分解有机物成无机物,如微生物

微生物在自然界物质循环转化中的作用

一、碳素的循环转化


二、氮素的循环转化

氮素是构成生物体的另一种必需元素,自然界中的氮素循环包括许多转化作用。

氮的存在形态

分子态氮:存在于大气中

有机氮化合物:包括蛋白质、核酸、其他含氮化合物v无机氮化合物(氨氮和硝态 氮)

空气中的氮气被固氮微生物固定成氨态氮,经过硝化微生物的作用转化成硝态氮,后者被植物或微生物同化成有机氮化物。 动物食用含氮的植物,又转变成动物体内的蛋白质。  

动物、植物、微生物的尸体及排泄物被微生物分解后,又以氨的形式释放出来,这种过程叫做氨化作用。  

 由硝化菌产生的硝酸盐在无氧条件下被一些微生物还原成为氮气,重新回到大气中,开始新的氮素循环。            微生物在氮素循环中的几种作用归纳为:固氮作用、硝化作用、同化作用、氨化作用和反硝化作用。

 植物只能利用无机氮,在动植物和微生物作用下三态相互转化。

固氮作用 : 分子态氮被还原成氨和其他氮化物的过程称为固氮作用。生物固氮,即通过微生物的作用固氮,90%以上的分子态氮都是经微生物的活动而固定成氮化物。

氨化作用 : 微生物分解有机氮化物产生氨的过程称为氨化作用。氨化作用产生的氨,一部分供微生物和植物同化,一部分被转变成硝酸盐。

硝化作用 : 微生物将NH3氧化成硝酸盐的过程称为硝化作用

反硝化作用 : 微生物还原硝酸盐,释放出分子态氮和NO的过程称为反硝化作用,参与这一作用的细菌称为反硝化作用细菌。


三、磷素的循环转化

v        在自然界中,磷的循环包括可溶性无机磷的同化、有机磷的矿化、不溶性磷的溶解等。

可溶性的无机磷化物被微生物吸收后合成有机磷化物,成为生命物质结构组分(同化作用)。

在土壤中,许多的细菌、放线菌和霉菌等含有植酸酶和磷酸酶,能够将含磷的有机物分解(异化作用),产生的无机磷化物可被植物吸收利用。

土壤中的磷酸或可溶性的磷酸盐与土壤中的一些盐基结合,形成不溶性的磷酸盐。

在天然水体中,大部分的磷存在于水下的沉积物中。不过,生活在土壤和水体中的一些微生物,通过代谢产生的硝酸、硫酸和有机酸又可将不溶性的磷酸盐溶解,从而使自然界中的磷素循环周而复始的不断进行。

应当指出,如果人类活动将含磷物质大量排放到水环境中,可溶性磷酸盐浓度过高会造成蓝细菌及其它藻类大量增殖,即常说的富营养化作用,从而破坏环境的生态平衡。

四、硫素的循环转化

v硫素的形式:

无机硫: SO42-、S2O3、S 、H2S

植物、藻类、异养型微生物只能直接利用SO42-,其它形态硫需要经过适当转化才能为它们吸收利用。

有机硫: -SH、蛋白质中的含硫氨基酸和硫胺素、生物素

硫是构成生命物质的必须元素,生物体内C:N:S 比率约为 100:10:1,进入土壤的含硫有机物主要是蛋白质,含硫氨基酸可被氨化微生物分解