目录

  • 1 日月星辰的运行规律
    • 1.1 人类天生就是追星族
    • 1.2 古人观天
    • 1.3 斗转星移
    • 1.4 寒来暑往
    • 1.5 太阳周年视运动
    • 1.6 星座的由来
    • 1.7 历法定制
    • 1.8 论“星座算命”
    • 1.9 月球
    • 1.10 月相变化
    • 1.11 古诗中的月相
    • 1.12 七曜星象
  • 2 太阳系
    • 2.1 太阳系的中心天体——太阳
    • 2.2 太阳也是扰动源
    • 2.3 八大行星
    • 2.4 柯伊伯带
    • 2.5 太阳系六重界限
  • 3 恒星 星团 星云
    • 3.1 恒星有多亮
    • 3.2 恒星光度和光谱测量
    • 3.3 光谱型与主序星
    • 3.4 双星
    • 3.5 疏散星团
    • 3.6 球状星团
    • 3.7 弥漫星云
    • 3.8 恒星诞生于星云
    • 3.9 不稳定恒星
    • 3.10 新星的概念
    • 3.11 超新星
    • 3.12 SN1987A
  • 4 星系
    • 4.1 宇宙岛之争
    • 4.2 星系的分类
    • 4.3 星系红移和哈勃常数
    • 4.4 空间在膨胀
    • 4.5 宇宙特征膨胀年龄
    • 4.6 本星系群
    • 4.7 夜空中的一条光带——银河
    • 4.8 其他星系群
    • 4.9 活动星系
    • 4.10 互扰星系
    • 4.11 类星体的结构模型
  • 5 黑洞
    • 5.1 什么是黑洞
    • 5.2 黑洞的形成
    • 5.3 恒星的特点
    • 5.4 恒星的诞生与死亡
    • 5.5 黑洞的“边界”
    • 5.6 引潮力
    • 5.7 时间冻结
    • 5.8 时空漩涡
    • 5.9 黑洞“四人帮”
    • 5.10 星团级黑洞和星系级黑洞
    • 5.11 巨型黑洞
    • 5.12 活动星系核
    • 5.13 微型黑洞
    • 5.14 黑洞理论的困难
    • 5.15 白洞与虫洞
    • 5.16 时间机器与超空间
  • 6 地外文明
    • 6.1 生命是什么?
    • 6.2 地球重大事件年表
    • 6.3 为什么地球有生命?
    • 6.4 星际有机分子的发现
    • 6.5 我们能和外星人接触吗?
    • 6.6 与地外文明的通信
    • 6.7 系外行星的探测
    • 6.8 kepler探测器的成果
    • 6.9 UFO并非地外文明的证据
  • 7 宇宙模型论
    • 7.1 何谓大爆炸模型?
    • 7.2 探测宇宙微波背景辐射
    • 7.3 宇宙物质从何而来?
    • 7.4 宇宙创生的进程
    • 7.5 两暗一黑三起源
    • 7.6 宇宙的未来会是什么样?
    • 7.7 暗物质的存在
    • 7.8 暗物质和暗能量在宇宙物质中的占比
    • 7.9 暗物质究竟是什么物质?
    • 7.10 宇宙正在加速膨胀
    • 7.11 暗能量到底是什么?
    • 7.12 宇宙中的奇点
    • 7.13 对称与破缺
    • 7.14 宇宙三问
时空漩涡
  • 1 视频
  • 2 章节测验


时空漩涡

科学家们将一个陀螺仪送上地球轨道,使它的一个旋转轴指向一颗遥远的恒星作为参考点。在没有任何外力作用的情况下,这一旋转轴应当永远指向这一颗恒星。但如果空间是扭曲的,那么陀螺仪的指向会随着时间推移发生改变。通过对这种改变的精密检测,科学家们能了解时空弯曲的相关信息。

这说起来似乎很简单,但真正做起来却非常艰难。

首先,制造引力探测器B中4个高精度陀螺仪需要用到精度极高的球体。事实上,这些陀螺仪内部的转子是人类迄今制造过的最完美球体。它们的大小约相当于一个乒乓球,由熔凝石英和硅材料制成,其相对完美球体的误差在任何方向都不超过40个原子的厚度。这样高的精度是必须的,因为如果不是这样做,那么这些陀螺仪转轴的晃动将出现误差。

根据爱因斯坦理论进行的估算显示,地球周围空间的时空扭曲将导致陀螺仪旋转轴出现每年0.041弧秒的改变。1弧秒等于1/3600度。为了测出这样微小的改变量,GP-B探测器必须具备0.0005弧秒的精度。这就相当于让你测量放在100英里(约合161公里)之外的一张纸的厚度。

对此,威尔说:“GP-B探测器项目的工程师们不得不发明一整套全新的技术来满足这种不可思议的要求。” 举几个例子,工程师们开发了一种“无拖曳”卫星技术,它可以让卫星擦过地球最外层大气却不会造成对其内部陀螺仪的扰动。他们还开发出独特的技术来防止地球磁场穿透探测器从而影响其测试精度。最后,他们还设计出一种技术来测量陀螺仪的旋转角度,但整个过程中不会触碰到陀螺仪从而对其造成影响。即便克服了制造和设计上的技术困难,进行这项精度空前的实验本身同样是一个巨大的挑战,但经过一年的数据收集和将近5年的数据分析,GP-B项目的科学家们认为他们已经几乎接近完成这项工作。

艾福瑞特说:“我们测量到测地线效应值为+6.600或-0.017,惯性系拖曳效应值为+0.039或-0.007。” 测地线效应是指由于地球的静止质量引起的陀螺旋转轴改变,也即时空的凹陷。而惯性系拖曳效应则是由于地球自转导致的陀螺旋转轴改变,也即时空的扭曲。测量得到的这两组数据都和爱因斯坦理论的预测非常吻合。