目录

  • 1 日月星辰的运行规律
    • 1.1 人类天生就是追星族
    • 1.2 古人观天
    • 1.3 斗转星移
    • 1.4 寒来暑往
    • 1.5 太阳周年视运动
    • 1.6 星座的由来
    • 1.7 历法定制
    • 1.8 论“星座算命”
    • 1.9 月球
    • 1.10 月相变化
    • 1.11 古诗中的月相
    • 1.12 七曜星象
  • 2 太阳系
    • 2.1 太阳系的中心天体——太阳
    • 2.2 太阳也是扰动源
    • 2.3 八大行星
    • 2.4 柯伊伯带
    • 2.5 太阳系六重界限
  • 3 恒星 星团 星云
    • 3.1 恒星有多亮
    • 3.2 恒星光度和光谱测量
    • 3.3 光谱型与主序星
    • 3.4 双星
    • 3.5 疏散星团
    • 3.6 球状星团
    • 3.7 弥漫星云
    • 3.8 恒星诞生于星云
    • 3.9 不稳定恒星
    • 3.10 新星的概念
    • 3.11 超新星
    • 3.12 SN1987A
  • 4 星系
    • 4.1 宇宙岛之争
    • 4.2 星系的分类
    • 4.3 星系红移和哈勃常数
    • 4.4 空间在膨胀
    • 4.5 宇宙特征膨胀年龄
    • 4.6 本星系群
    • 4.7 夜空中的一条光带——银河
    • 4.8 其他星系群
    • 4.9 活动星系
    • 4.10 互扰星系
    • 4.11 类星体的结构模型
  • 5 黑洞
    • 5.1 什么是黑洞
    • 5.2 黑洞的形成
    • 5.3 恒星的特点
    • 5.4 恒星的诞生与死亡
    • 5.5 黑洞的“边界”
    • 5.6 引潮力
    • 5.7 时间冻结
    • 5.8 时空漩涡
    • 5.9 黑洞“四人帮”
    • 5.10 星团级黑洞和星系级黑洞
    • 5.11 巨型黑洞
    • 5.12 活动星系核
    • 5.13 微型黑洞
    • 5.14 黑洞理论的困难
    • 5.15 白洞与虫洞
    • 5.16 时间机器与超空间
  • 6 地外文明
    • 6.1 生命是什么?
    • 6.2 地球重大事件年表
    • 6.3 为什么地球有生命?
    • 6.4 星际有机分子的发现
    • 6.5 我们能和外星人接触吗?
    • 6.6 与地外文明的通信
    • 6.7 系外行星的探测
    • 6.8 kepler探测器的成果
    • 6.9 UFO并非地外文明的证据
  • 7 宇宙模型论
    • 7.1 何谓大爆炸模型?
    • 7.2 探测宇宙微波背景辐射
    • 7.3 宇宙物质从何而来?
    • 7.4 宇宙创生的进程
    • 7.5 两暗一黑三起源
    • 7.6 宇宙的未来会是什么样?
    • 7.7 暗物质的存在
    • 7.8 暗物质和暗能量在宇宙物质中的占比
    • 7.9 暗物质究竟是什么物质?
    • 7.10 宇宙正在加速膨胀
    • 7.11 暗能量到底是什么?
    • 7.12 宇宙中的奇点
    • 7.13 对称与破缺
    • 7.14 宇宙三问
恒星的诞生与死亡
  • 1 视频
  • 2 章节测验


恒星的诞生与死亡

在旋臂和旋臂之间,是一些暗弱的区域,科学分析表明,这里大多是炽热而高度电离的气体,其中气体压力很大,可以抵制气体在引力作用下的收缩倾向,所以这些区域不易形成恒星。而在旋臂中,气体的密度较大,离子、原子和尘埃颗粒之间的碰撞相当频繁,能有效地使气体“冷却”,并产生氢分子构成的气体云团―分子云。分子云的温度较低,通常仅为绝对温度10度左右,每一个云的质量大约相当于太阳的1000到10000倍。正是这些分子云的进一步碎裂和坍缩导致一群一群原始恒星的诞生。

星卵

作为恒星诞生地的星际气体云团十分稀薄而且温度极低,云团中与引力相抗衡的气体压力很弱,引力的作用使得云团缓慢地收缩。 

超新星爆炸产生的冲击波或云团周围一些亮星向外喷射的高热气流(称为“星风”)都会使云团中出现不均匀的密度分布,造成云团中出现多个密度中心,这些密度中心周围的气体分别向这些中心收缩,形成一个个小云团。收缩过程中,小云团中心温度升高,旋转加快,密度越来越大,演变成中心有核,周围由盘状物质包围的形状,云团的表面温度一般为绝对温度2000-3000度,质量与太阳相仿,只发出红外辐射,不发射可见光,所以还只是恒星的胚胎,或形象地称之为“星卵”。 

不同大小的云团演化快慢大不一样,象太阳这样典型大小的恒星,其处于星卵的状态的大约要维持100万年,在此期间云团继续复杂的收缩过程,中心温度则持续升高,一直到超过100万度,在这种极高的温度下将出现由氢原子核变成氦原子核的“核聚变”反应,这是恒星的根本特征,星球只有到了能由核聚变反应而释放能量,才算是真正进入了“成年恒星”的阶段,也只有此时才真正变得灿烂夺目。此时的恒星中心密度和温度都很高,巨大的气体压力足以抵抗引力收缩,所以恒星也不再继续收缩了,恒星的性质变得十分稳定,就象我们的太阳一样,恒星一生中90%以上的时间都处于这一阶段。

太阳这样大小的恒星是宇宙中最为典型的,它们生命中80%-90%的时间都处在稳定的主序阶段,当中心的氢逐渐燃烧完后,一颗恒星的生命就接近尾声了。此时星体核心会迅速收缩,相反地,外层的氢却开始燃烧并迅速膨胀,这是恒星生命中一个十分有趣的阶段,星体的体积大大增加,比如太阳这样的恒星会膨胀数百倍,膨胀的结果导致恒星表面温度下降,颜色变红,同时其表面亮度却会大大增强,天文学上习惯于将光度(即恒星的本质亮度)大的天体称为“巨星”,因此这一阶段的恒星的典型特征就是“红巨星”。相对而言,“红巨星”阶段是很短暂的,此后由于核心的收缩导致温度进一步升高而引发氦原子核聚变为碳原子核的反应以及此后一系列更为复杂的核聚变反应,恒星快速地走向死亡。